결측치 다루기

Pywiki
Sam (토론 | 기여)님의 2022년 8월 3일 (수) 10:08 판 (→‎개요)
둘러보기로 가기 검색하러 가기

1 결측치 다루기 예시

Kaggle의 'Missing Values'에서 제공한 코드를 약간 변형.

전략 예시
버리기
# 결측치가 하나라도 있는 열을 찾는다.
cols_with_missing = [col for col in X_train.columns if X_train[col].isnull().any()]

# 해당 행 버리기.
reduced_X_train = X_train.drop(cols_with_missing, axis=1)
reduced_X_valid = X_valid.drop(cols_with_missing, axis=1)
채우기
from sklearn.impute import SimpleImputer

imputer = SimpleImputer()
imputed_train_X = pd.DataFrame(imputer.fit_transform(train_X))  # 학습용 자료에 결측치 채워넣기.
test_train_X = pd.DataFrame(imputer.transform(test_X))  # 테스트용 데이터에 결측치 채워넣기.(위에서 사용하는 메서드와 다르다. 무슨 차이일까..)
[어떤 값으로 채우는 걸까?]

SimpleImputer(strategy='median')

데이터프레임을 사용하는 경우, fillna(채울값) 함수가 준비되어 있다.

df.fillna(method = 'ffill') # 비어 있을 경우, 바로 위 데이터를 입력

df.fillna(method = 'bfill') # 비어 있을 경우, 바로 아래 데이터를 입력

채우고, 표시하기
X_train_plus = X_train.copy()
X_valid_plus = X_valid.copy()

# 해당 값이 원랜 비어있었다는 것을 표시하기 위한 열 만들기.
for col in cols_with_missing:
    X_train_plus[col + '_was_missing'] = X_train_plus[col].isnull()
    X_valid_plus[col + '_was_missing'] = X_valid_plus[col].isnull()

# 채우기
my_imputer = SimpleImputer()
imputed_X_train_plus = pd.DataFrame(my_imputer.fit_transform(X_train_plus))
imputed_X_valid_plus = pd.DataFrame(my_imputer.transform(X_valid_plus))

# imputer가 열 이름을 다 지워버리기 때문에 열을 다시 복사한다.(굳이 열을 다시 살릴 이유가 있나??)
imputed_X_train_plus.columns = X_train_plus.columns
imputed_X_valid_plus.columns = X_valid_plus.columns
복잡한 작업을 했기 때문에 단순 채우기보다 성능이 좋아질 것 같지만.. 오히려 나빠지는 경우도 있다.

2 시계열에서 결측치

자료를 지속적으로 수집하려는 시도를 하지만, 종종 에러가 발생한다든가 빼먹는 경우가 생긴다. 이럴 때 발생한 결측치는 어떻게 처리할 것인가?